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ABSTRACT:

This paper presents a new approach to simultaneous detection and tracking of vehicles moving through an intersection in aerial images
acquired by an unmanned aerial vehicle (UAV). Detailed analysis of spatial and temporal utilization of an intersection is an important
step for its design evaluation and further traffic inspection. Traffic flow at intersections is typically very dynamic and requires continuous
and accurate monitoring systems. Conventional traffic surveillance relies on a set of fixed cameras or other detectors, requiring a high
density of the said devices in order to monitor the intersection in its entirety and to provide data in sufficient quality. Alternatively, a UAV
can be converted to a very agile and responsive mobile sensing platform for data collection from such large scenes. However, manual
vehicle annotation in aerial images would involve tremendous effort. In this paper, the proposed combination of vehicle detection and
tracking aims to tackle the problem of automatic traffic analysis at an intersection from visual data. The presented method has been
evaluated in several real-life scenarios.

1. INTRODUCTION

A detailed analysis and evaluation of traffic flow is essential for
a precise design and development of transport infrastructure. The
current primary sources of traffic statistics are measurement sta-
tions based on induction loops and ultrasonic sensors, which count
vehicles that pass a given point on the road. These conventional
solutions typically provide data only in the form of basic fre-
quency statistics, i.e. Annual Average Day Traffic (AADT). How-
ever, these systems have obvious shortcomings due to fixed in-
stallation, a very limited field of view and the type of sensors
utilized.

Intersections are the most limiting factor to the capacity of the
whole transport network, and therefore it is necessary to pay close
attention to their design. Complex road junctions are of various
types and can take up a large area, which is difficult to monitor
in its entirety. For that reason, the standard monitoring systems
are often placed only at the entrances and exits. However, this
can be very restrictive in situations where the information about
the behaviour of traffic participants during the passage through
the intersection is crucial (e.g. the evaluation of the intersection
design, a detailed comparison with simulated data, etc.). Further-
more, deploying fixed cameras or other on-ground counters over
such wide range typically requires massive investment (which is
far from realistic) and so alternatives are needed.

Aerial video surveillance using a wide field-of-view sensor has
provided new opportunities in traffic monitoring over such ex-
tensive areas. In fact, unmanned aircraft systems equipped with
automatic position stabilization units and high resolution cam-
eras could be the most effective choice for data acquisition in
sufficient quality. UAVs, unlike satellites or airplanes, are able to
collect visual data from low altitudes, and therefore provide im-
ages with adequate spatial resolution for further traffic inspection,
i.e. vehicle detection and tracking.

In this paper, we are concerned with tracking multiple vehicles in
order to obtain detailed and accurate information about the vehi-
cles’ trajectories in the course of their passage through the inter-
section. The visual data for the analysis are captured by a camera

mounted on an UAV. The operating time of a UAV is about twenty
minutes due to its rapid consumption of battery power. The data
is not analysed on board but recorded on a memory card and sub-
sequently post-processed on a high-performance computer.

The remaining part of the present paper is organized as follows:
Section 2 provides an overview of the related research conducted
in the field of traffic surveillance and aerial image processing.
Section 3 outlines the architecture of the proposed vehicle de-
tection and tracking system. In section 4 our vehicle detection
algorithm is described. A utilized vehicle tracking framework is
presented in section 5. Section 6 provides insight into evalua-
tion experiments and their results. Section 7 discusses the per-
formance and applicability of the proposed system and possible
future improvements.

2. RELATED WORK

Over the past few years, aerial image processing has become
a popular research topic because of increased data availability.
Aerial images can cover a large area in a single frame, which
makes them attractive for monitoring and mapping tasks. There-
fore, the utilization of UAVs operating in low-altitude for traffic
inspection has been a major research interest in the past decade;
an introduction to the current trends can be found in this brief
survey paper (Lee and Kwak, 2014). Generally speaking, the
task can be divided into two essential parts: vehicle detection and
vehicle tracking.

The design of efficient and robust vehicle detection methods in
aerial images has been addressed several times in the past. In
general, these methods can be classified into two categories de-
pending on whether explicit or implicit model is utilized (Nguyen
et al., 2007). The explicit model approach uses a generic 2D or
3D model of vehicle and the detection predominately relies on
geometric features like edges, lines and surfaces (Zhao and Neva-
tia, 2001, Moon et al., 2002). Kozempel and Reulke (Kozempel
and Reulke, 2009) provided a very fast solution which is based
on four special shaped edge filters aimed to represent an aver-
age vehicle. These filters, however, have to be pointed in a cor-
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Figure 1. System architecture – the Boosted classifier is divided into two parts, the weak and the strong classifier. The detections taken
from the strong classifier are used for initialization of new targets and/or for the update of the appearance models of existing targets
when an association occurs. The detections returned by the weak classifier are used as clues in the tracking procedure.

rect direction according to the street database. In case of im-
plicit approaches, the internal representation is derived through
collecting statistics over the extracted features like histogram of
oriented gradients (HoG), local binary patterns (LBP), etc. The
detection for candidate image regions is performed by comput-
ing the feature vectors and classifying them against the internal
representation (Nguyen et al., 2007, Sindoori et al., 2013, Lin et
al., 2009, Tuermer et al., 2010). Among the main generic disad-
vantages of these approaches are the need for a huge amount of
annotated training data, a lot of miss detections of rotated vehi-
cles, and computational expensiveness during the training phase
(the features are usually passed to a cascade classifier training
algorithm).

To achieve real-time performance, Gleason and Nefian (Gleason
et al., 2011) employed a two-stage classifier. The first stage per-
forms a fast filtration based on the density of corners, colour
profiles, and clustering. The second stage is more complex: it
computes HoG and histogram of Gabor coefficients as features
for binary classifier. Similar preprocessing phase is often used
in order to make the detection faster and more reliable (Moran-
duzzo and Melgani, 2014). Another strategy for elimination of
false positive detections is restricting the areas for vehicle de-
tection by application of street extraction techniques (Pacher et
al., 2008, Tuermer et al., 2010). In contrast to the above men-
tioned approaches, which take information from a single image
only, Truemer et al. (Tuermer et al., 2011) tried to enhance the
performance by incorporating temporal information from motion
analysis into the detection process. In (Xiao et al., 2010), the
authors also employed a motion analysis by a three-frame sub-
traction scheme; moreover, they proposed a method for track as-
sociations by graph matching and vehicle behaviour modelling.
Next to the region or sliding window based method in (Cheng et
al., 2012), they also designed a pixel-wise detector of vehicles
which employs dynamic Bayesian network in the classification
step. (Selvakumar and Kalaivani, 2013) presents a brief compar-
ative study of detection techniques.

Video-based moving object tracking is one of the most popular
research problems in computer vision. However, it is still a chal-
lenging task due to the presence of noise, occlusion, dynamic
and cluttered backgrounds, and changes in the appearance of the
tracked object, which are all very common in aerial images. Nu-
merous tracking approaches have been presented in recent years;
a detailed survey can be found in (Yilmaz et al., 2006). Our goal

is to obtain the trajectories of targets over time and to maintain
a correct, unique identification of each target throughout. Con-
tinuous tracking of multiple similar targets becomes tricky when
the targets pass close to one another, which is very common at
intersections. One of the early attempts to deal with the occlu-
sions for traffic surveillance was proposed by Koller et al. (Koller
et al., 1993), employing an explicit occlusion reasoning coupled
with Kalman filters. However, to speed up the process of tracking
and to accommodate the non-Gaussianness nature of the problem,
a group of sequential Monte Carlo methods, also known as Parti-
cle Filters, is utilized (Rothrock and Drummond, 2000, Danescu
et al., 2009, Hue et al., 2002). Particle filters can be discrim-
inatively trained for specific environment and different objects-
to-be-tracked tasks, as demonstrated by Hess and Fern in (Hess
and Fern, 2009). Current approaches in vehicle tracking from
aerial or satellite imagery aim at off-line optimization of data as-
sociation, e.g. by deploying bipartite graph matching (Xiao et al.,
2010, Reilly et al., 2010) or by revising temporal tracking corre-
spondence as done by Saleemi and Shah in (Saleemi and Shah,
2013) by maintaining multiple possible candidate tracks per ob-
ject using a context-aware association (vehicle leading model,
avoidance of track intersection) and applying a weighted hypo-
thetical measurement derived from the observed measurement
distribution.

3. SYSTEM OVERVIEW

This paper proposes a method for detection and tracking of ve-
hicles passing through an intersection for a detailed traffic analy-
sis. The results are used for evaluation of the design of intersec-
tion and its contribution in the traffic network. The output from
the analysis needs to be in the orthogonal coordinate system of
the analysed intersection; therefore the transformation between
the reference image and the intersection’s coordinate system is
known. For simplicity’s sake the interchange types of intersec-
tions are not addressed and the analysed area is approximated by
a plane. Figure 1 depicts the overall design of the system, which
can be divided into three main parts: preprocessing, vehicle de-
tection, and tracking.

In the preprocessing step, the acquired image is undistorted and
geo-registered against a user-selected reference frame. The meth-
ods for image undistortion have been addressed in literature sev-
eral times (Mallon and Whelan, 2004, Wang et al., 2011, Beau-
chemin and Bajcsy, 2001). In our case, radial and tangential



distortions are employed. The perspective transformation model
is used in the geo-registration process. First, local ORB fea-
tures (Rublee et al., 2011) are extracted both from the acquired
undistorted frame and the reference frame. The features are then
matched based on their descriptor distances and cross-validated,
forming pairs of points which are used for estimation of geomet-
rical transformation. Robustness of the algorithm is achieved uti-
lizing RANSAC procedure (Fischler and Bolles, 1981).

Due to its outstanding detection performance, the boosting tech-
nique introduced by Viola and Jones was adopted for the vehicle
detection (Viola and Jones, 2001, Lienhart and Maydt, 2002). In
order to increase robustness to changes in illumination and to ac-
celerate the training phase, Multi-scale Block Local Binary Pat-
terns (MB-LBP) was employed. The searching space is restricted
to the intersection of the motion and street masks with aim to con-
siderably decrease false positive rate and computational demands.
The detections which are not associated with existing tracks are
added to the tracker as new targets.

For tracking, a sequential particle filter has been adopted. How-
ever, due to exponential complexity in the number of tracked
targets, the system utilizes a set of fully independent Bootstrap
particle filters (Isard and Blake, 1998), one filter per vehicle,
rather than the joint particle filter (Khan et al., 2003). A target
is represented by a gradually updated rectangular template. To
further improve the tracker’s robustness to cluttered background,
a weak vehicle classifier with high positive detection rate is in-
troduced to generate possible candidates for each frame. In fact,
the weak classifier is obtained as an earlier stage of the robust
one. Therefore, the acquired detections naturally contain a lot
of false alarms; however, the probability of true positives is also
not inconsiderable. Thanks to the high frame rate of input video,
it seems to be beneficial to assume that the true positive detec-
tions and the predicted target states are very close to each other.
The application of this assumption can effectively eliminate false
alarms and can help avoid the tracking failures. The following
sections provide detailed explanations of the most important parts
of the whole system.

4. DETECTION

To detect vehicles, Viola and Jones’s AdaBoost algorithm was
utilized for the selection of appropriate features and construction
of a robust detector (i.e. binary classifier). In their original pa-
per, the authors used HAAR features for object representations;
however, HAAR features have poor robustness to illumination
changes and lead to a high false alarm rate (Ju et al., 2013). To
alleviate these challenges and accelerate the learning phase, MB-
LBP has been employed (Liao et al., 2007). Comparing with the
original LBP calculated in a 3x3 pixel neighbourhood, MB-LBP
is computed from average values of block sub-regions; therefore,
MB-LBP is more robust since it encodes not only microstructures
but also macrostructures, and provides more complete image rep-
resentation. According to (Ju et al., 2013), MB-LBP features
have a comparable hit rate to HAAR features, but a significantly
smaller false alarm rate, which is crucial in the proposed system.
Classification is performed in multi-scale and the obtained detec-
tions are grouped together with respect to their spatial similarity.
The number of neighbours is used as a measure of confidence for
determination of further addition of an unassociated vehicle as
a new target to the tracker.

In order to eliminate false positives and accelerate detection, we
restricted the searching area only to road surface. In our case,
this information can be easily extracted from GIS because of the
implicit requirement of geo-registration process. Moreover, the

foreground mask is generated by background subtraction method
based on Gaussian Mixture model (Zivkovic, 2004), and it is sub-
sequently intersected with the acquired street mask. Afterwards,
several morphological operations (erosion and dilation) are per-
formed on the result of the intersection to reduce noise. This strat-
egy reduces the false positive rate of the detector significantly.

The detector was trained on a hand annotated training dataset
with 20,000 positive and 20,000 negative samples taken from
aerial videos. The size of the samples is 32 × 32 pixels. The
positive samples contain cars of different types, colours, and ori-
entations. The negative samples were created from the surround-
ings of the analysed intersection, as well as from the road surface
with the emphasis on horizontal traffic signs. Examples of both
positive and negative samples are shown in Figure 2.

(a) Positive samples (scaled for illustration)

(b) Negative samples

Figure 2. Examples of samples used to train vehicle detector.

5. TRACKING

Over the last few years, particle filters, also known as sequential
Monte Carlo methods, have proved to be a powerful technique
for tracking purposes owing to their simplicity, flexibility, and the
ability to cope with non-linear and non-Gaussian tasks (Rothrock
and Drummond, 2000). Yet, particle filters may perform poorly
when the posterior density is multi-modal. To overcome this dif-
ficulty, each target can be tracked by an individual particle filter
as used in (Schulz et al., 2001, Danescu et al., 2009). In contrast
to the approaches based on the extension of the state-space to in-
clude all targets, this approach considerably reduces the number
of particles which are necessary for reliable tracking. Next, these
individual particle filters can easily interact through the compu-
tation of the particle weights to handle the tracking scenario con-
straints (e.g. two vehicles cannot occupy the same place).

For individual trackers, a subtype of sequential importance sam-
pling filter, Bayesian bootstrap particle filter, has been employed.
Bootstrap filter uses transition density as a proposal density and
performs resampling step in each iteration. In what follows, let
MPF = (C, {Xi}i∈C , {Mi}i∈C , W, t, E) denote a simplified
particle representation of the |C| tracked vehicles, where C rep-
resents the index set, Xi represents the set of particles and Mi is
set of internal representations which belong to the i-th target. W
stands for a function which computes the importance weight, t
represents a transition function, and E returns the estimated state
of the target as a single measurement.

5.1 Target representation and update

Target is represented by a rectangular descriptor template consist-
ing of 4 channels: the sum of absolute response of Scharr oper-
ator and 3 colour channels (red, green, blue); all extracted from
the processed image. This type of representation is able to carry
both spatial and colour information, and its computation is very
fast. To further emphasise the central part of the template, where
the vehicle is to be present, we deploy a circular weighted mask.



The template is updated over the period of tracking only if one or
both of the following events happen:

• The strong classifier yields a new detection in place where
a significant overlap with the template occurs.

• The heat condition ch of weak classifier is fulfilled, which
is as follows:

ch(x) = true ⇔
∑

d∈Dweak

f(x,xd, 1.5) > Theat, (1)

where Dweak is a set of current detections of the weak clas-
sifier, xd is a position of the detection d in the geo-registered
image, f(x,µ, σ) represents the value of a multivariate nor-
mal distributionN (µ, Σ) expressed at center x of the track-
ed object, Σ is diagonal 2 × 2 matrix with values of σ2 at
its diagonal, and Theat = 4 is the predefined threshold.

Additionally, to prevent undesirable swaps between the targets,
the template update is disabled if multiple targets overlap. On the
event of template update, the values of the template are altered
by weighted average of the former template and new template
extracted from the currently processed frame, where the former
template has the weight of 0.95 and new the template has the
weight of 0.05. This way we achieve plasticity of the target rep-
resentation over the period of time while still being stable enough
to keep the tracker from drifting away from the target.

5.2 Target state and motion model

In order to cover every movement of the target, a weak motion
modelling was utilized. This approach brings an enhanced capa-
bility to overcome high perturbations and therefore may be more
robust in situations where the movement modelling is cumber-
some (typically at intersections). The particle approximation of
the i-th target state consists of X(i) = {(x, y, s)|x, y, s ∈ R}
where (x, y) is the location of the target in the intersection coor-
dinate system, and s is the size of the rectangular bounding box.
The components of the state are assumed to follow independent
Gaussian random walk models with variances (σ2

x, σ
2
y, σ

2
s). The

estimated target state is represented by the highest-weighted par-
ticle (maximum a posteriori), i.e. E(i) = argmax

p∈X(i)

(W(p, i)).

5.3 Importance weight computation

The proposed importance weight computation is composed of
two parts: appearance similarity and AdaBoost attraction factor,
and it is defined as:

W(p, i) = eApp(p,i)·Ada(p,i) (2)

Let ϕ(p, I) be a function which returns the descriptor template
for image patch of interest in the current registered frame I pa-
rametrised by particle p and resized to the size of internal repre-
sentation T ∈M(i). Then, the appearance similarity between the
internal representation and the obtained template is computed as
a sum of weighted absolute differences:

App (p, i) =∑
(x,y)∈T (1− absdiff(ϕ(p, I)(x,y), T(x,y)))W(x,y)

n|T |
(3)

where W is a circular weighted mask, n denotes the number of
descriptor template channels and |.| returns the number of pixels

of the template (all intensity values of channels are normalized to
the interval of [0, 1]).

AdaBoost attraction factor substantially helps to overcome the
situations in which the background is heavily cluttered. In such
cases, the measure of the appearance similarity is not discrimina-
tive enough and the tracker may be prone to failure. To alleviate
this difficulty, the detections produced by the weak classifier are
used as clues during the tracking. Let Dweak be a set of detec-
tions returned by the weak classifier; then the attraction factor is
defined as follows:

Ada(p, i) =
∑

d∈Dweak

f(x,xd, 1.5), (4)

where x is a position of the evaluated particle p, xd is a position
of the detection d, and function f(x,µ, σ) is the same as in the
Equation 1.

5.4 Tracking termination

Tracking of the i-th target is automatically terminated when E(i)
is outside the road mask, or when there was no association with
any detection produced by the strong classifier for the predefined
amount of time (frames). The results are recorded only for in-
stances for which the input and output lanes are known. If the
target reached the output lane and the input lane is unknown,
backward tracking is utilized from the first detection in order to
try to determine the input lane. The backward tracking algorithm
is basically the same as the forward version; the frames are pro-
cessed in a reversed order and the target is only tracked until the
input lane is discovered, or until any termination condition is met.

6. EXPERIMENTS

The system presented in this paper has been evaluated on two se-
quences of video data captured by action camera GoPro Hero3
Black Edition mounted on a UAV flown at the height of approx.
100m above the road surface. The video was captured with the
resolution of 1920 px× 980 px at 29Hz. Due to utilization of
ultra-wide angle lens, the diagonal field of view was 139.6◦.
The spatial resolution of the captured scene was approximately
10.5 cm/px. In the course of data acquisition the UAV was sta-
bilized around a fixed position in the air.

The first sequence was captured near Netroufalky construction
site in Bohunice, Brno, Czech Republic. The second sequence
was captured at the site of roundabout junction of Hamerska road
and Lipenska road near Olomouc, Czech Republic.

The evaluation was carried out against ground truth annotated
by hand consisting of trajectories of all vehicles that both fully
entered and exited the crossroad area during the evaluation se-
quence. As high level evaluation metrics we used relative num-
ber of missed targets NMTr = NMT

|L| , relative number of false
tracks NFTr = NFT

|L| , average number of swaps in tracks ANST

and temporal average of measure of completeness MOCa which
is defined as follows:

MOCa =

∑nvideo
k=0 Comp(k)

nvideo
. (5)

NMT and NFT are defined as in (Gorji et al., 2011) but with
respect to the whole evaluation sequence, |L| is a number of
ground truth tracks, nvideo is the number of images in the evalu-
ation sequence, ANST and Comp(k) are described in (Gorji et
al., 2011) as well.



(a) Netroufalky

(b) Olomouc

Figure 3. Scenes used for evaluation.

The spatial precision of the algorithm was evaluated using root
mean square error (RMSE) of track position averaging over all
valid tracks. The estimated track Ei is considered corresponding
to the ground truth lj at given time moment k if the track Ei is
the nearest track to the truth lj at the moment k and vice versa,
and the distance between them is less than threshold tdist = 3m.
The estimated track is valid if it corresponds to the same ground
truth for the whole period of the vehicle presence in the analysed
area.

Sequence Netroufalky Olomouc

True Tracks # 165 168

Estimated Tracks # 173 153

Valid Estimated Tracks # 143 115

NMTr 0.054 0.197

NFTr 0.052 0.163

ANST 0.049 0.066

MOCa 0.841 0.667

RMSE [m] 1.045 1.102

Table 1. The results of the evaluation.

A user of the traffic analysis tool may want to inspect and fix
invalid tracks. To indicate the necessary effort that is needed to
fix the invalid tracks the following graph shows the dependency
of the number of missed true tracks (true tracks that were not
assigned to any valid estimated track) on the rate of adjustments
needed to the best partially matching estimated tracks.
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Figure 4. Histogram of missed true tracks, according to required
adjustment to best matching fragments.

7. CONCLUSION

In this paper, we proposed a system for vehicles’ trajectories ex-
traction from aerial video data captured by a UAV. The function-
ality of the system was demonstrated on two extensive hand an-
notated data sets. Our approach shows sufficient performance for
automatic extraction of vehicles’ trajectories for further traffic in-
spection. Moreover, we illustrated that the manual effort needed
for the correction of most of the missed trajectories to get more
accurate results is negligible. Several questions remain open for
future research. It would be interesting to handle the road junc-
tions with grade separations, as well as using data fusion from
more UAVs.
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APPENDIX

(a) Netroufalky

(b) Olomouc

Figure 5. Illustration of extracted vehicle trajectories in evaluated
traffic scenes. The images are converted to grayscale for bet-
ter readability of overlay graphics: blue-green curves represent
vehicle trajectories and red labels with white numbers represent
unique identificators of tracked objects.

(a) Geo-registered input image

(b) Overlaid detections: dark blue rectangles represent weak detections,
light blue rectangles represent strong detections.

0.0 1.0

(c) Colourised map representing normalised values of attraction factor ex-
pressed over whole area of the scene, according to Equation 4.

Figure 6. Illustration of selected steps of single image analysis.


