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Abstract

In this paper we present a complex solution to automatic vehicle trajectory extraction from aerial
video data, providing a basis for a cost-effective and flexible way to gather detailed vehicle trajectory
data in traffic scenes. The video sequences are captured using an action camera mounted on
a UAV flying above the traffic scene and processed off-line. The system utilizes video stabilisation
algorithm and geo-registration based on RANSAC guided transformation estimation of ORB image
feature sets. Vehicles are detected in scene using AdaBoost classifier constructed of Multi-Scale
Block Local Binary Patterns features. The vehicle tracking is carried out by multi-target tracker
based upon set of intra-independent Bayesian bootstrap particle filters specialized to deal with
environmental occlusion, multi-target overlap, low resolution and feature salinity of targets and
their appearance changes. The performance of the presented system was evaluated against
hand-annotated video sequences captured in distinct traffic scenes. The analysis show promising
results with average target miss ratio of 22.5% while keeping incorrect tracking ratio down to 20.4%.
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1. Introduction

Traffic congestion data and information about traffic
participants, their trajectory and dynamics during their
passage through a traffic scene render to be crucial
in numerous applications, from transport infrastruc-
ture design analysis and improvement, through anal-
ysis of driver’s behaviour in various situations (such
as unusual intersections, changes in road signs, or
weather/lighting conditions) to traffic management (dy-
namic traffic flow redirection, collision detection, nav-
igation assistance) [1].

The current primary sources of traffic statistics are
measurement stations based on induction loops and
ultrasonic sensors, which count vehicles that pass a

given point on the road. These conventional solutions
typically provide data only in the form of basic fre-
quency statistics. Further solution is to employ fixed
cameras mounted on ground which can provide addi-
tional data, such as vehicle identification and speed
estimation. Such solutions however tent to require
massive investments and so alternatives are needed.
Aerial video surveillance using a wide field-of-view
camera sensors offer new opportunities in traffic moni-
toring, especially in latest years thank to the boom of
multicopter UAVs and action cameras.

The utilisation of UAVs operating in low-altitude
for traffic inspection has been a major research interest
in the past decade; an introduction to the current trends
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can be found in this brief survey [2]. Generally, the
task of vehicle trajectory extraction can be divided
into two essential parts: vehicle detection and vehicle
tracking.

Vehicle detection methods can be classified into
two categories depending on whether an explicit or im-
plicit model is utilized [3]. Explicit model approach
requires a user provided description of detected object
—a generic 2D or 3D model of vehicle, which relies on
geometric features, such as edges and surfaces of vehi-
cle body or cast shadows, as seen in works of Moon
et al. [4] (detection of rectangular body boundaries
and windscreens in response of Canny Edge detector),
Zhao and Nevatia [5] (adding possibility of shadow
presence and incorporating Bayessian network in deci-
sion making step) and ZuWhan and Malik [6] (three-
dimensional line features based upon detailed model of
possible vehicle shapes and probablistic distributions
of its dimensions).

Implicit models are derived through collecting
statistics over the extracted features, such as Histogram
of Oriented Gradients, Local Binary Patterns, spe-
cialised pixel-wise features and so forth. The detection
for candidate image regions is performed by comput-
ing the feature vectors and classifying them against the
internal representation usually built up by a cascade
classifier training algorithm, such as AdaBoost [7] or
more complex dynamic Bayesian networks [8]. The
main idea when using implicit models is to use two-
stage detection, when in the first stage, the detection
candidates are filtered according to various clues such
as colour-spatial profiles, density of Harris corners [9],
SIFT feature salinity [10] or street extraction tech-
niques [11, 12]. Additionally, temporal information
from motion analysis and background subtraction can
be incorporated, as seen in [13, 14].

Object tracking algorithms employed in traffic
analysis may be divided in two groups: algorithms
using Bayesian filters and off-line data association
algorithms. One of the most prominent Bayesian fil-
tering algorithm — Kalman filter has been proposed
for object tracking as early, as in 1970 [15], and its
variations has been used in vehicle tracking in aerial
data already in 1993 [16]. To deal with non-linearity
of target behaviour model, the extended Kalman filter
is suggested by Obolensky in [17]. However, Kalman
filter is suited only for tasks modelled by single-modal
Gaussian probability density, which is limiting factor
in tasks of vehicle tracking in aerial imagery. There-
fore, in latest years, particle filter algorithms are being
employed, as seen in works of Karlsson and Gustafs-
son [ 18] (with its modification using Bayessian Boot-

strap algorithm), Samuelsson [19] and Hess et al [20]
(pseudo-independent particle filters parametrized by
log-linear models with error-driven discriminative fil-
ter training). Offline data association tracking algo-
rithms may be based upon graph matching techniques
with edges weighted according to spatial proximity
and velocity orientation components [21] or kinematic
measures, shape and appearance matching [14]. Al-
ternative approaches can be based upon hierarchical
connecting of shorter estimations of parts of trajecto-
ries — tracklets, into longer ones, eventually forming
whole trajectories [22] or maintaining multiple possi-
ble candidate tracks per object using a context-aware
association (vehicle leading model, avoidance of track
intersection) [23].

In this paper we would like to present a system
for automatic trajectory extraction from aerial video
data. The system utilizes video stabilisation algorithm
and geo-registration based on RANSAC [24] guided
transformation estimation of ORB image features [25]
extracted from annotated reference image and video
sequence frames. To produce vehicle detection can-
didates, we apply background modelling algorithm
based on Gaussian Mixture Model [26] which output
(foreground mask) is fused together with road refer-
ence mask and map of currently tracked vehicles. To
keep the system easily modifiable for different target
types (pedestrians, animals,. .. ), for vehicle detection,
we have utilized implicit model description based on
Multi-Scale Block Local Binary Pattern features [27]
trained by Viola and Jones’s AdaBoost algorithm. The
system incorporates two classifiers — strong classifier,
which detections are considered as significant indi-
cation of vehicle presence, and weak classifier with
higher false alarm rate and very low target miss rate,
which output is used to aid vehicle tracking stage. For
tracking algorithm we have employed set of fully in-
dependent Bayesian bootstrap particle filters [18], one
per each target. The algorithm was modified to cope
with nature of aerial video data — environmental occlu-
sion, multi-target overlap, low resolution and feature
salinity of targets and their appearance changes.

The purpose of vehicle detection stage is to provide
new targets for tracking stage and aid tracking stage
by giving clues about the positions of already tracked
vehicles. The preceding step of vehicle detection is
transformation of input image into the real world co-
ordinate system, removing perspective effect. This
transformation is derived from known transformation
of reference image into real world coordinate system



and estimated transformation between reference image
and current image. This step leads to orthographic
representation of the scene, reducing the range of pos-
sible candidate sizes. Candidate generation is limited
to road surface area retrieved from annotated reference
image and the candidate must fulfil at least one of the
following conditions:

e Center of candidate area exhibits the signs of
motion. To detect the motion, we employed
background cubtration method based on Gaus-
sian Mixture Model as presented in [26].

e Candidate area is overlapped significantly by
currently tracked vehicle. To test this condition,
the position of the tracked vehicle has to be
predicted — using the motion model of vehicle
as described in section 3.2.

For the selection of appropriate features and con-
struction of a robust detector, we have utilized Viola
and Jones’s Adaboost algorithm [7], but instead of
HAAR features, we have employed Multi-Scale Block
Local Binary Patterns (MB-LBP) features, which cal-
culation is computationally less expensive, and due to

the ability to encode both microstructures and macrostruc-

tures of the image area, they are shown to be more
robust to illumination changes [28] and have signifi-
cantly smaller false alarm rate than HAAR features,
while keeping comparable hit rate [28].

The classifier was trained on hand annotated train-
ing dataset with 20000 positive and 20000 negative
samples taken from aerial videos. The size of every
sample is 32 x 32 pixels. Positive samples contain
motor vehicles of different types, colours and orien-
tations. The negative samples were created from sur-
roundings of the intersections, as well as from the road
surface with the emphasis on horizontal traffic signs.
The resulting trained classifier consists of 18 stages of
boosting cascade of simple MB-LBP classifiers. For
the further improvement of detection assistance for
tracking algorithm, the trained detector was split to
two classifiers:

e strong vehicle classifier — consisting of all 18
stages of trained classifier, having small false
alarm rate. The detections signalled by this clas-
sifier, further referenced as strong detections, are
considered as very significant indication of vehi-
cle presence in detection candidate area, and are
treated as such further in tracking stage of the
algorithm, especially as basis for new tracking
targets.

e weak vehicle classifier — consisting of first 11
stages of trained classifier, having higher false

alarm rate. This classifier is more benevolent
than strong vehicle classifier accepting much
more detection candidates and its output is used
to aid vehicle tracking, acting as tracking at-
tractors. These detections, further referenced as
weak detections, form basis for heat function.

2.1 Heat Function

To speed up the operations with weak detections, we
proposed following function which for given point in
two-dimensional real-world coordinate system returns
the significance of this point according to the set of
weak detections :

h(x)=1+ Y f(xx4,04) , (1

degweak

where 9.4 is a set of current weak detections, X,
is a position of the detection d in real-world coordi-
nate system, Oy is size of detection d in real-world
coordinate system, f (x, L, o) represents the value of
a multivariate normal distribution .4 (i, X) expressed
at point x. Matrix X is constructed as follows:

(0.160)* 0

Yy —
0 (0.160)?
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Tracking of vehicle targets in the scene is carried out
using the detections generated by both strong and
weak vehicle classifiers and data extracted from geo-
registered input frame. It is divided into three steps:
Detection-Track Association, Tracks Update and Track-
ing Termination, which all will be described in follow-
ing subsections.

3.1 Detection-Track Association

For each detection from both sets of weak and strong
detections, the best fitting tracked object is found and
vice versa, while strong detections being favoured.
Formally, let Z,,.q be a set of weak detections, sz rong
be a set of strong detections, Z = Dyyeak U Dsirong be a
set of all detections, .7 be a set of all currently tracked
objects and . is set of constructed associations. Then
for every constructed association (d,t) € <7, where
de Zandt € .7, it must be that:

Vd' € 2,d' # d .diff (d',1) > diff (d,1) v

3
de gstrgng Nd' S @weak )
and
Vi' € T 1" # 1 diff (d,1") > diff (d,1) A
diff (d,t) < dif frax > 4)



(a) Geo-registered input image

(b) Overlaid detections: dark blue rectangles (c) Colourised representation of heat func-

represent weak detections, light blue rectan- tion values normalised into interval < 0,1 >.
gles represent strong detections.

Figure 1. Example of heat function defined in equation (1) constructed from a set of weak detections.

where dif f,,.. is arbitrary constant and diff (d,) is
function, which returns the difference of rectangles
representing detection d and tracked object ¢. It is
defined as follows:

_ ral+[r] =2|ra&ry|

iff =
di (d;t) |rd’+‘rt‘ ) (5)

where r; is rectangle representing detection d, r; is
rectangle representing tracked object ¢, function ||
returns area of rectangle r and binary operator & rep-
resents intersection of given operands.

Every strong detection that has not been associated
to any of currently tracked objects forms basis for new
tracking target — its initial size, position and target
model is derived from detection, while velocity is set
to zero.

3.2 Tracks Update

Tracks update step engages tracking algorithm itself
to estimate the position of tracked targets in the cur-
rent image, according to sequence of all video frames
up to this time moment. For this purpose, a set of
intra-independent Bayesian bootstrap particle filters
has been employed — one per each target, similarly as
in [29, 30]. Bootstrap filter uses transition density as a
proposal density and performs resampling step in each
iteration [18].

For the algorithm to be able to track its target,
the description of tracked object is necessary — target
model. Our system uses a rectangular descriptor tem-
plate derived from detection area of the target, consist-
ing of 3 colour channels (RGB) and edge map channel
— sum of absolute response of Scharr operator in both
x and y directions in the image. This template is ex-
tracted from geo-registered image bounded by area
defined by initial detection, and it is resized to uniform
size 32 x 32 pixels. To achieve the plasticity of target
model, the template T, of tracked object ¢ is updated
if one of the following events happen:

e There is currently associated strong detection to
object 7.

e There is currently associated weak detection to
object ¢ and the value of heat function 4 (x) as
described in equation (1), evaluated at the esti-
mated position of tracked object, is greater than
threshold T, .

In the case of template update, the values of template
are altered by weighted average of the former template
and new template extracted from currently processed
image, where former template has weight of 0.95 and
new template has weight of 0.05. Additionally, to pre-
vent undesirable swaps between targets, the template
update is disabled if multiple targets overlap.

The particle filter uses particles which states are de-
fined by target position vector X, target velocity vector
v and target size s, all in real-world coordinate system,
forming together particle state vector:

x(0)
x(1)
v(0)| . (6)
v(1)

As the transition model, we consider target position
is an integration of target velocity, and therefore it is
represented by following matrix:

1 01 00
01010
D=(0 0 1 0 O] |, (7)
00010
0 0001
and state transition equation:
p =D (p"+n) ®)

where n is 5D noise vector, which elements are gen-
erated randomly by normal distribution .4 (u,6?),



where [t = 0 and value of ¢ is user defined parameter
for each element of noise vector. In case of velocity
noise and size noise, the parameter ¢ is constant dur-
ing the whole course of tracking, whilst for position
noise, the value of parameter ¢ evolves according to
following equation:

ol = o (14 fm) )

where, i is sequential order of currently processed im-
age from target’s tracking inception, Oy is target value
of G,Ei) for i — oo, f is falloff ratio and m is initial
multiplier of covariance. The application of this ap-
proach causes the position of particle to be affected
more by random noise than by its velocity during the
early stage of tracking, and afterwards slowly elevating
the effect of velocity. This way, the particle’s velocity
may slowly adapt while elevating its effect on particle
behaviour.

0 10 20 30 40
Figure 2. Graph of function G,Ei) defined by equation

(9) according to values of i for parameters ox = 1,
f=09and m=4.

The evaluation and resampling step of the parti-
cle filter is based upon importance weight # (p,t) of
particle p for tracked target ¢+ which is defined as:

W (p,t) = Arp(p)*Ati(p) (10)

The appearance similarity function App (p,t) of parti-
cle p to target ¢ is evaluated as follows:

1
~ 1+SAD¢ (T, T,)

App (p1) (1D
where 7; is model template of target object ¢, T, is
model template of fictitious target object based on
particle p and SAD¢ (71, T3) is sum of absolute differ-
ences of templates 77 and 75 across all their channels
spatially weighted by circular mask around the centre
of the templates at point ¢ = (16, 16) px, with radius of
16 px. The attraction factor function Art (p) of particle
p is defined as:

Ait (p) =h(xy) . (12)

where & (X) is heat function as defined in equation (1)
and x,, is position of particle p in real world coordinate
system. The estimated state & (¢) of the target 7 is
represented as the highest-weighted particle (maximum
a posteriori), i.e.:

& (1) =argmax (¥ (p;1))
Pef%(t)

(13)

where Z;) is set of all particles of particle filter mod-
elling tracked target r. Resampling step of particle
filter for particle set 2, is carried out using weight
proportionate random selection, also known as roulette
wheel principle, according to values of particle’s im-
portance weight.

3.3 Tracking Termination
Tracking of target ' is terminated when one of the
following conditions are met:

e Target T leaves the area defined by annotated
road surface.

e Target model of target /" has not been updated
for certain amount of time steps.

e Target ¢ is overlapping with another target ¢’
for certain amount of time steps and following
condition is met:

App (pit') > App (pit’) . (14

where App (p,t) is appearance similarity func-
tion as described in equation (11), pj, is highest
weighted particle of particle set 2 tied with
target ¢’ and p}: is highest weighted particle of
particle set 2,1 tied with target th.

In case of tracking termination of target ¢, its gener-
ated trajectory is analysed. If it is found that the target
t" has fully entered the analysed area of the scene,
passed through it and left it, in that order, it is consid-
ered as successful tracking. Otherwise, the tracking is
considered as unsuccessful and is rejected.

The system presented in this paper has been evaluated
on two sequences of video data captured by action cam-
era GoPro Hero3 Black Edition mounted on a UAV
flown at the height of approx. 100 m above the road
surface. The video was captured with the resolution
of 1920 px x 980 px at 29 Hz. Due to utilization of
ultra-wide angle lens, the diagonal field of view was
139.6°. The spatial resolution of the captured scene
was approximately 10.5 cm/px. In the course of data
acquisition the UAV was stabilized around a fixed po-
sition in the air.



The first sequence was captured near Netroufalky
construction site in Bohunice, Brno, Czech Republic.
The second sequence was captured at the site of round-
about junction of Hamerska road and Lipenska road
near Olomouc, Czech Republic.

(a) Netroufalky

(b) Olomouc

Figure 3. Scenes used for evaluation.

The evaluation was carried out against ground truth
annotated by hand consisting of trajectories of all ve-
hicles that both fully entered and exited the crossroad
area during the evaluation sequence. As high level
evaluation metrics we used relative number of missed
targets NMTr | L| , relative number of false tracks

NFT, = | L‘ , average number of swaps in tracks ANST
and temporal average of measure of completeness
MOC, which is defined as follows:

vatdeo Comp (k)
Nyideo

Metrics NMT and NFT are defined as in [31], aver-
aged by arithmetic mean across the whole evaluation
sequence, |L| is a number of ground truth tracks, n,;ge,
is the number of images in the evaluation sequence,
ANST and Comp(k) are described in [31] as well.
The spatial precision of the algorithm was evalu-
ated using root mean square error (RMSE) of track

MOC, = (15)

position averaging over all valid tracks. The estimated
track &; is considered corresponding to the ground
truth /; at given time moment k if the track &; is
the nearest track to the truth /; at the moment k and
vice versa, and the distance between them is less than
threshold t4;; = 3m. The estimated track is valid if
it corresponds to the same ground truth for the whole
period of the vehicle presence in the analysed area.

Table 1. Results of the evaluation.

Sequence Netroufalky Olomouc
True Tracks # 165 168
Estimated Tracks # 173 153
Valid Estimated Tracks # 143 115

NMT,; 0.054 0.197

NFT, 0.052 0.163

ANST 0.049 0.066

MOC, 0.841 0.667

RMSE [m] 1.045 1.102

Incorrect or missed targets in the sequence can be
easily noticed and fixed by a human user. To indicate
the necessary effort that is needed to fix the invalid
tracks the following graph shows the dependency of
the number of missed true tracks (true tracks that were
not assigned to any valid estimated track) on the rate
of adjustments needed to the best partially matching
estimated tracks.
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Figure 4. Histogram of missed true tracks, according
to required adjustment to best matching fragments.

5. Conclusions

In this paper, we have presented a system for vehicles’
trajectories extraction from aerial video data captured
by a UAV. The most important part of the system is its
tracking algorithm based upon set of intra-independent
Bayesian bootstrap particle filters which were modified



Figure 5. Output example of the presented system.

to deal with special caveats which are derived from
the nature of vehicle tracking in aerial video data -
huge data amount, low spatial resolution and temporal
variance of camera position and tracked objects.

The system’s accuracy and performance is at present
stage not suitable for wide application, but we believe,
that it can be improved further. Both the detection
algorithm and tracking algorithm were implemented
with plans of further improvements and possible spe-
cialisation. The detection cascades can be retrained
for different object types and their performance im-
proved by collecting much more training data. Alter-
natively, we consider change to deep learning methods
for target detection, as they render to be superior when
huge set of training data is provided [32]. Also, the
tracking algorithm can be improved by introducing
intra-dependency, driver model, target shape estima-
tion, occlusion ordering and other usual approaches
in multi-object tracking. Further discussion, improve-
ments and tests will be part of my master thesis.

The potential of the system is also indicated by the
fact, that it is already being used as assisting tool in
process of intersection analysis and design at Institute
of Road Structures under Faculty of Civil Engineering,
Brno University of Technology.
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